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SUMMARY

A theory for obtaining approximate solutions to nonlinear problems whose
exact solutions require the use of large computational procedures is described.
The technique represents in some respects a generalization of the method of
base and comparison solutions for flows depending on a parameter. For the
generalized problem, the input variable is no longer a parameter but a function
that is incremented over its entire domain. After performing calculations for
a base configuration and a small number of variations of it, solutions for a
large class of configurations can be obtained by forming linear combinations of
the solution increments. For a restricted class of problems, approximate solu-
tions can be obtained for general variations of a base configuration by using
a function-space derivative estimate obtained from a base solution and a single
variation.

INTRODUCTION

Many important aerospace-related problems require the solution of one or
more nonlinear differential equations. Although analytic solutions are rare,
many such problems have been solved by means of numerical computerized proce-
dures. Often such procedures are long and expensive, when large computing
times and storage are required, and they are cumbersome to operate when many
input variables and parameters are required.

An alternate to using such programs is to seek approximate solutions by
linearizing the differential equations. Such a linearization procedure consists
of considering the problem as a perturbation of a "base" problem for which the
solution is known. However, even the linear equations often defy solution in
analytic form unless the base problem is almost trivially simple, as for example,
an undisturbed free-stream flow.

Clearly the usage of large complex computational algorithms could be
reduced if there were a way to combine a program for computing a base solution,
with a fast, simple procedure for computing the effects of perturbation about
that solution. Such a method has been described in reference 1 for flows that
depend on some parameter such as Mach number, angle of attack, or thickness
ratio, when one of these parameters is perturbed from its base value.

The present analysis represents, in some sense, an extension of the method
of reference 1 to problems that involve the perturbation, not of a parameter,
but of an entire function. Thus, the method applies to problems for which the
input is a function, such as one prescribing a boundary shape; and the output
is also a function, such as the pressure distribution over the boundary. The
method could also be used to determine variations in the ground noise pattern
of an airplane due to variations in its trajectory.



Advantages of the method are that it is applicable to a large class of
complex problems, and that it does not require tedious analytic procedures such
as solving inner and outer problems, matching, etc.

that it requires a means of generating base solutions. Furthermore, it is,

general, not directly applicable to problems containing jump discontinuities,
although it can be modified to handle such problems by methods similar to those

of reference 2.

SYMBOLS
constant coefficient
pressure coefficient
local sound speed
solution (output) function
independent (input) function
Gateaux derivative

continuous function of small maximum ordinate representing an
increment to £

denotes a linear operator

Mach number

parameter

denotes a nonlinear operator

nondimensional body radius (in terms of body length)

nondimensional distance in free-stream direction and perpendicular
to free-stream direction, respectively (in terms of body length)

shifted coordinate

angle of attack

before a variable denotes an increment in the variable
before a function denotes a perturbation in the function
small parameter

velocity potential

Its primary limitation is
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Subscripts:

i represents ith quantity in a sequence
o denotes base value
1,2,3 denotes quantities associated respectively with the first, second,

and third variations
X,y denotes derivatives with respect to x and vy
Superscript:

' Gateaux derivative of an operator

DEVELOPMENT OF THEORY
Background Theory on Nonlinear Problems Depending on a Parameter

Reference 1 treats the problem of reducing computer time by combining
calculations which have a full nonlinear numerical solution with calculations
obtained by a simple linear interpolation scheme. If the solution depends on
a parameter p (e.g., Mach number, angle of attack, thickness ratio), then the
effect on the solution F of an incremental change in p is
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provided that F does not change discontinuously with p. The latter situation
would occur, for example, in certain transonic flows involving shock waves. The
problem that arises in the application of equation (1) is that in the problem
treated, it is not possible to obtain an analytic expression for F(p) that
JF
can be differentiated to obtain 5—. However, if a computer program exists for
p
computing the solution F, then a "base" solution F, can be calculated for a
specified value p, of the parameter p, and a second solution Fy = Fo + AF
can be calculated for an incremented value pj = pg + Ap of the parameter.
This second solution is called a calibration solution. The derivative in equa-

AR
tion (1), evaluated at p, can then be approximated by ZT' Consequently,
P

eduation (1) can be used to obtain the variation of this solution from the
base solution for any other small variation in p from its base value <if

Ar
Aop = pg - po then Fp % Fy + = A2p>. Results given in reference 1 indicate
P

that the accuracy of solutions obtained in this manner is often surprisingly
good, even when sizable increments in the parameter are taken.



Methods for treating problems with discontinuities have received much
attention in the literature. It should be noted that, since the derivative in
equation (1) is taken with respect to a parameter and not with respect to the
independent distance variable, the presence of the shock itself does not pre-
clude a solution by equation (1). It is the movement of the shock with changes
in the parameter that causes the difficulty. Nixon (ref. 2) has treated this
problem by using a coordinate-straining method that has been combined with
interpolation by equation (1) in reference 1. 1In the following development,
discontinuous flows will not be discussed as such, under the assumption that
for such problems the solution obtained can similarly be combined with Nixon's
coordinate-straining method (ref. 2).

Theory for Solutions Depending on an Independent Function

By extending the interpolation procedure of reference 1 with a function-
space development, one can obtain solutions for a very general class of prob-
lems. This class of problems involves perturbations about a base solution which
represents a more complex flow than the simple undisturbed free-stream flow.

Consider, for example, the nonlinear potential equation for two-~dimensional
compressible inviscid flow

(€2 - dx2)bxy ~ 20xbybxy + (€2 = ¢y2)0yy = 0 (2)

One can assume a solution in the form of a perturbation &8¢ about a base solu-
tion ¢4

o = 0 + 8¢ (3)

If equation (3) is substituted into equation (2) and only linear terms in ¢
are retained, then the resulting differential equation is a linear equation

for &¢. However, the coefficients of several terms involve either ¢, or its
derivatives, and consequently the equation cannot generally be solved analyti-
cally. It only becomes tractable in the case in which ¢, represents the
constant-velocity undisturbed free-stream flow. However, perturbation solutions
about this flow pertain only to slender configurations, and such solutions have
already been treated extensively.

Consider, however, problems involving nonslender configurations. Solutions
for such problems normally are obtained by a numerical procedure. If the solu-
tion represents the pressure or velocity distribution on a two-dimensional sur-
face then it can be expressed as a function of the streamwise variable x,

F = FP(x)



The solution can be expressed as an operator Q (in general, nonlinear) operat-
ing on the function £(x) that describes the boundary shape

F(x) = olf(x)]

Let h(x) represent a variation of the specific boundary function £f4(x). Then
a differential of the operator can be defined with respect to function-space
variations of f(x). Formally, if the limit

olfy + enl - Qlf,]
lim = LIf,, hl
e*0 €

exists in a neighborhood of £,, if it is continuous in f at £,, and if it

is continuous in h at h =0, then L 1is called the Gateaux differential of

Q, and it is linear operator operating on the variation h (ref. 3, sec. 3.1).
Although the present theory is oriented toward computer solutions, this

concept of the differential of an operator can be illustrated by a simple ana-
lytic example. Suppose that Q(x) were expressible in the form

X
olf(x)] = £(x) j; [£(e)]2 @e

Replacing f by £, + €h and taking the limit

olf, + ehl - Qlf,]

lim
£*0 €

yields the result

X

X
0 = h(x) Jﬁ l£(e)12 ae + f(x),j; 2f(€) h{e) de
0 0

which is linear in h.
When Q 1is not expressible in analytic form, but only as the output of

a computational procedure, then, in a manner somewhat similar to that of ref-
erence 1 for incrementing a parameter, this operator can be estimated by



obtaining the difference between a calibration solution and a base solution for
slightly different boundary functions. Since L 1is linear, the solutions for
other variations proportional to h can be obtained from the formula

Qlfy + ah] = Qlf,) + Llfg,ah]l = QIf,] + aLlfy,hl] (4)

This procedure, although somewhat analogous to that of reference 1 for variation
of a parameter, differs from it in several notable respects. The first obvious
difference is that the change in the solution is accomplished by varying a func-
tion rather than incrementing a parameter. Secondly, the differential of (@

is calculated directly, without, in general, computing a quantity analogous

to the derivative in equation (1). In fact, such a function-space derivative,
called the Gateaux derivative Q'[fl = G[f]l, can be defined by the formula

L{f,h] = G[f]h (5)

However, when h is given and L is estimated by comparing base and calibra-
tion solutions, the calculation of G[f(x)] by dividing by h is generally
not applicable. Exceptions to this situation will be discussed in a later
section.

If it were possible to compute G[fl, then the effect of making an arbi-
trary variation in f could be used to obtain the effect of making any other
type of variation. In the usual case, however, only the solution corresponding
to boundary variations proportional to h(x) can be obtained from a single
calibration solution. If a different type of variation is considered, then a
second calibration calculation is required. Thus, for the two types of varia-
tions, equation (4) gives

N

Qlf, + aym] = Ql£,] + ajLify, ]

0l£,] + asLlf,, hy)

n

Ql£f, + azhy)
Furthermore, since L 1is a linear operator on h,
Qlfy + ajhy + aghpl = QIf ] + ajLify, ] + asLify, hsl (6)

Thus, if two calibration calculations have been performed, a large variety of
shapes determined by the various linear combinations of hy and hj can be
analyzed. Clearly this procedure can be extended to any number n of linearly



independent variations hj (i = 1, n) provided that the total variation

n

:S aihi remains small. Thus, even in the absence of analytic expressions
i=1

a partial synthesis of the operator L can be generated.

Application of Theory

Airfoil pressure distributions.— To illustrate the application of the
method, two types of problems have been selected. The first problem involves
the calculation, by the method of reference 4 of the upper surface pressure
distribution on an airfoil at M = 0.56 and a = 2.0°. The base design, with
its pressure distribution, is shown in figure 1(a). The airfoil is 17.5 per~
cent thick with its maximum upper surface ordinate at the 30-percent-chord
station. A variation £, + hy of the upper surface shape is shown in fig-
ure 1(b), together with its pressure distribution. This variation is 17.3 per-
cent thick with its maximum upper surface ordinate at the 40-percent station.
A second variation f5, + hy is shown in figure 1(c). It is 19 percent thick
with its maximum upper surface ordinate at the 30-percent station.

The first variation was obtained by shifting the abscissa,
X =x - 0.476x(1 - x)
and defining the new surface by
fo + hy = f5(X)
Thus,
m = f5(X) - £5(x)
The other variation was defined by

hy = 0.04x(1 - x)

Many possible airfoil shapes can be obtained by changing the ordinate of
the f, design in increments proportional to hj, to hj, or to some linear
cambination of the two. An example is shown in figure 2. It is represented
by the combination £, + 0.6hy - 0.4hj, which is 16.7 percent thick with its
maximum upper surface ordinate at the 37-percent station.



Figure 2 also shows a comparison of the pressure distribution computed by
the full nonlinear algorithm with that obtained by the present method. It is
seen that, for this example, the accuracy of the approximation is very good.
The actual pressure calculations for this example are given in table I.

For many problems, the output function is not uniformly sensitive to small
variations in the input function. For example, airfoil pressures tend to be
sensitive to variations in the geometry very near the nose. 1If, for a particu-
lar case, this sensitivity causes a problem, then smaller variations in the
geometry shape must be taken.

Supersonic forebody pressure distributions.- The second type of problem
treated is that of computing the pressure distribution on pointed axisymmetric
forebodies at supersonic speeds. Figure 3(a) shows the base configuration
fo(x) with its pressure distribution, calculated by the method of reference 5,
for a free-stream Mach number of 3.0. These examples are relatively straight-
forward, and not representative of the large complex computer calculations for
which the method is intended. They are, however, adequate for purposes of
illustration; and they possess the further advantage that they do not involve
specialized knowledge or notation, as would be required, for example, in a
boundary-layer calculation.

Figures 3(b) and 3(c) give the body shapes and pressure distributions,
respectively, for two variations: £f5 + hy (hy = 0.04x(1 - x)), and £, + hj
{hp = -0.02 sin 7mx). Figure 4(a) gives results for the linear combination
fo + 0.3hy + 0.7hy, both by direct calculations and by linearly combining the
pressure distributions of figures 3(a), 3(b), and 3(c). Figure 4(b) gives a
similar comparison for the combination £, + 0.3hy - 0.7h3. 1In both cases,
the approximate calculations are nearly indistinguishable from the full non-
linear results.

The magnitude of the variation that can be taken with the calculation
remaining in the linear range depends on the type of problem considered. If
small increments in the input function £ (x) cause large changes in the out-
put function F(x), then the variations taken must be very small. If small
increments in £ (x) cause discontinuous jumps in F(x), then the linear theory
is not applicable.

An example of a sizable variation h3 (h3 = -0.02 sin 27x) - of the base
configuration f,(x) (fig. 3(a)) is shown in figure 5. The resulting pres-
sure distribution differs radically from that of the base shape. In this
case, the variation cannot be considered to be an incremental change in the
base design. Nevertheless, when it is treated as such, as in the combination
fo + 0.3hy + 0.7h3 shown in figure 6, the results show remarkably good agree-
ment with the exact calculation.

Implementation of the Method
Application of the theory described in the previous section requires some
simple software in addition to the basic computer algorithm that computes the

result F(x) = QIf(x)] from the input distribution f(x). For each case, the
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input x and f arrays as well as the output x and F arrays must be stored
with distinguishing case labels. Then a short auxiliary program can perform the
following functions:

1. Read the x, £, and F arrays for each case.

2. Establish a common array of the independent variable x for all cases,
by interpolation, if necessary. :

3. Distinguish one configuration as the base £q,(x).

4. Calculate the incremental functions LI[f5,hj] by obtaining the dif-
ferences Qlfy + hjl - olf,] = LIfg, byl

5. Compute and output results for any linear combination
Q[fo +zaj_hi] = Q[fo] +ZaiL[fo,hi]

Considerations on Approximating Gateaux Derivative

It was pointed out previously that the function-space differential is nor-
mally computed directly, whereas, for an ordinary function of real variables,
the differential is defined in terms of the derivatives (eq. (1)). The question
arises as to whether a function-space analogue of the derivative exists. As
mentioned earlier, under certain conditions for the existence of the linear
operator L[fo,h] (ref. 3, sec. 3.4), the Gateaux derivative G = Q' of the
nonlinear operator @ <can be defined by

Llf,,h]l = GlEylh

If L[fo,h] were known in the form of an analytic expression containing a fac-
tor of h, then an expression for G could be obtained by a simple division.
The linear differential L could then be computed for any variation f5 + h

by this equation. Thus, the linear approximations to the solutions for all con-
figurations near f, could be obtained with only two calculations.

For the type of problem under consideration, in which the operators are
not expressible in analytic form, such a procedure is generally not applicable.
However, in the next section an example will be provided for which the deriva-
tive formulation appears to be useful.

Example of Approximating the Derivative

The advantages of the derivative formulation of the problem (eq. (5)) pro-
vide motivation for exploring the possibility of obtaining an estimate for the
derivative when the solution for F is provided in the form of a numerical com-
puter procedure. When a problem can be formulated in several ways, one of these

9



possibilities may lead more naturally to a relation of the form of equation (5)
from which the function-space derivative can be approximated. Of course, in
such a procedure division by h at its zeros must be avoided, with values of
the derivative at these points obtained by interpolation.

Consider, for example, the above illustrative problem of computing the
pressure distribution on a supersonic body of revolution. For this problem,
the input function £(x) can be chosen to be the slope distribution of the body
meridian line. Since it is well known that small local changes in flow angle
are approximately proportional to the corresponding changes in pressure at super-
sonic speeds, one might expect that the quantities h(x) and L[fy,h]l repre-
senting the variation in body slope and the corresponding variation in pressure,
respectively, would vary in a similar manner. Thus, a valid approximation to
the derivative according to equation (5) appears possible.

In order to illustrate this procedure, a calculation was performed using
the same base body shape as in the preceding example. The variation
-0.01 sin 2mx was arbitrarily chosen. The slope variation is
hy = -0.02 cos 2mx. The result L[f,,hy] was divided by hy to provide
an estimate of the derivative GIfgy] in accordance with equation (5). A
second variation 0.04x(1 - x) which corresponds to a slope variation of
hy = 0.04(1 - 2x) was then chosen, and the pressure increment was estimated
by multiplying the function G by hj(x). Finally, for comparison, the pres-
sure increment was determined exactly by calculating directly the pressure for
the slope f£f5 + hjp.

The results are compared in figure 7(a) for the pressure increments, and
the total pressures are compared in figure 7(b). It is seen that the approxi-
mate method provides a good approximation to the exact theory for this partic-
ular problem. Such calculations with the function~space derivative should be
useful when a rapid rough approximation is acceptable and in certain design
problems.

Limitations of the Theory

It should be clear that any theory involving differentials or small vari-
ations are limited to problems for which the output quantities are continuous
functions of the input quantities that are to be incremented. 1If the output
is relatively sensitive to variation in the input, then relatively small incre-
ments must be taken. However, if the solution for the incremented input differs
qualitatively from the base solution, then the method generally fails. Some
examples for which the latter problem occurs are the sudden appearance of a
shock, the appearance of leading-edge separation, and the movement of a shock
wave or a separation point. In the case of shock movement, the linear theory
can be applied in combination with the coordinate straining procedure of Nixon,
which has already been noted. This procedure involves applying a shift operator
to the incremented input function in order to "line up" the shocks for the base
and incremented solutions. The coordinates are then shifted back a proportional
distance to obtain the interpolated solutions.

10



Other Types of Problems Amenable to Treatment by Local Superposition

Although the preceding discussion is restricted to problems for which a
change in the output function is effected by varying an input function, a simi-
lar treatment is applicable to other kinds of problems. In reference 1, a
change in the output function resulted from incrementing an input parameter,
such as Mach number, angle of attack, or thickness ratio. Using the present
method, it would be possible to compute the effect of incrementing each of these
parameters separately, and then approximate the effects of incrementing various
combinations of them simultaneously by linearly superimposing the separate
increments.

Another type of problem involves the increment in a single output quantity
as a result of incrementing an input parameter. Examples of such problems
include computing the 1ift of an airfoil or the wave drag of a supersonic con-
figuration as a function of Mach number, angle of attack, or thickness ratio.
Since, in this case, the output quantity is a simple function of several vari-
ables, the partial derivatives with respect to each independent variable can be
approximated, and the total differential due to varying combinations of them
can be computed by the linear nature of the derivatives.

Suppose, on the other hand, that the increments in an output quantity such
as 1lift or drag were due, not to incrementing a parameter, but to varying the
configuration shape. The output quantity is then denoted a functional (ref. 3,
P- 9): depending on the input function that describes the boundary shape. By
computing the increments due to variation in the boundary shape, one can obtain
the effects of linearly combining the variations. An interesting problem of
this type is that of studying the changes in the effective perceived noise level
at a ground point due to variations in the flight pattern or engine operation
of a jet airplane.

Finally, it should be pointed out that the inputs to this type of procedure
are by no means limited to those obtainable from an analytic formula, or a compu-
tational procedure, but could just as well represent experimental data.

CONCLUDING REMARKS

A theory has been presented for reducing the usage of large computational
algorithms. Such algorithms are treated in this theory as nonlinear operators
operating on an input function. The method requires a procedure for obtaining
computer solutions for a base problem, and for a limited number of variations
of this problem. The solutions of other problems that differ slightly from the
base problem are then found by forming linear combinations of the increments
obtained for the computed variations. The examples given involved nonlinear
analysis of subsonic airfoils and of supersonic forebody shapes.

For a restricted class of problems, a function-space derivative can be

approximated. For such cases, only one variation from the base problem is
required in order to approximate solutions for general variations. The example

1"



that was described treated the solution for the pressure distribution on an
axisymmetric supersonic forebody as an operator on the slope distribution of
the body meridian.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 31, 1981
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TABLE I.- PRESSURE CALCULATIONS FOR AIRFOIL DEFINED BY

Fo + 0.6hy - 0.4hy

Station, x | Cp,0 | Cp,1 Cp2 | MCp | BaCp | Cp+ 0.6 MCp - 0.4 Axcy EgZCt
0.05 ~1.130 | -0.955 | -1.140 | 0.175 | -0.010 -1.021 -1.014
10 -1.400 | -1.015 | -1.566 | .385 | -.166 | -1.103 -1.090
.14 -1.406 | -1.033 | -1.674 | .373 | -.268 -1.075 ~1.088
.20 -1.285 | -1.051 | -1.565| .234 | -.280 -1.033 -1.055
.25 ~1.164 | -1.0575 | -1.410 | .1065| -.246 -1.002 -1.016
.30 -1.038 | -1.051 | -1.250 | -.013 | -.212 -.961 ~.968
.35 ~.916 | -1.031 | -1.105 | -.115 | ~-.189 ~.909 ~.913
. 40 ~.795 | =-.997 | -.970 | -.202 | -.175 ~.841 -.847
.50 ~.607 | =-.880 | ~-.730 | -.273 | -.123 -.722 ST
.60 ~.440 | -.735 | -.530 | -.295 | -.090 - .581 -.570
.69 -.301 | -.570 | -.365| -.269 | -.064 -.437 ~.430
.80 -135 | -.339 | -.167 | -.204 | -.032 ~.245 ~.240
.90 .038 | -.069 .043 | -.107 .005 ~.024 ~.020

€l
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-1.5 —

1.5 -

(a) Base configuration.

Figure 1.- Original (base) airfoil configuration and two upper
surface variations with corresponding pressure distributions.
M=0.56; o = 2.0°,
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(b) First variation of airfoil configuration.

Figure 1.- Continued.
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(c) Second variation of airfoil configuration.

Figure 1.- Concluded.
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Figure 2.- Comparison of exact and approximate airfoils for
composite upper surface £, + 0.6hy - 0.4hj.
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(a) Base configuration.

Figure 3.- Supersonic forebody (base) configuration and two variations
with corresponding pressure distributions. M = 3.0; o = 0°,



(b) First variation hy(x).

Figure 3.~ Continued.
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(c) Second variation.

Figure 3.- Concluded.
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X

(a) First composite body £, + 0.3hy + 0.7hj.
Figure 4.- Comparison of exact and approximate theories for two com-

posite configurations synthesized from the base configuration
fo, and the two variations hy and hy. M = 3.0; o = 0°,

21
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-1~ ————— Exact

O Approximate

A

(b) Second composite body £o + 0.3hy - 0.7hj.

Figure 4.- Concluded.
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0 1 2 3 4 .5 6 7 8 9 1.0

Figure 5.- Example of a variation h3 representing a relatively large
deviation from the base configuration £,, with corresponding
pressure distribution. M = 3.0; o = 00,
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Figure 6.- Comparison of exact and approximate theories for the
composite configuration £, + 0.3hy + 0.7h3. M = 3.0;
o = 0°,
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(a) Pressure increment.

Figure 7.- Comparison of exact and approximate calculations
utilizing function-space derivation approximation for the
hy variation. M = 3.0; o = 09,
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(b) Pressure coefficient.

Figure 7.- Concluded.
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